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Abstract

Smart-Contracts based on decentralized blockchain-systems like Ethereum are one of the
most promising emerging technologies that become more and more attractive while enabling
completely new types of applications. Solidity, the most popular programming-language for
smart-contract development, is regularly maintained and improved by a large community and
the Solidity-Commandline-Compiler is integrated in a variety of development-environments
for decentralized applications. However, how the compiler and the optimization-processes of
the bytecodes work internally is unfortunately not easy to comprehend for the majority of
developers. This bachelor thesis will shed light onto this topic by taking a closer look at the
concrete implementation of the Solidity compiler and the involved optimizers.
In this thesis we will analyze the source-code of the Solidity compiler and look at the
different optimization-procedures and how they affect the bytecode. By first determining
the overall structure of EVM-bytecode and describing the functionality of the individual
bytecode-segments, we then go into greater detail about the modifications in the different
sections due to bytecode-optimization.
Furthermore, we explain how the different optimization-features of the compiler-instructions
internally impact the optimizer-utilization in the compiler and how the different optimization
influences the resulting bytecode and which modifications can be identified.
We then look at the implications of different bytecode-optimization and hereby analyze
how to detect potentially redundant bytecodes on the Ethereum blockchain due to lack of
optimization. In this context we introduce a design-proposal of such an attempt and discuss
conceptional and technical challenges.
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1 Introduction

1.1 Motivation

Smart-Contracts have become a household-name for an emerging technology. Over the last
few years, the space has evolved from a small experimental niche-technology to a multi-
billion dollar ecosystem on the Ethereum network. A large variety of applications, until
now predominantly of financial nature, handle assets in the 13 billion US dollar range1 as of
the year 2020. In doing so, attempts are being made to replicate excising services from the
traditional financial-industry with the use of smart-contracts on a blockchain-based system
like Ethereum and thus reshape them in a simpler, more transparent and fairer way. Examples
for such services are decentralized exchanges, derivative platforms or lending-protocols. The
trust-less execution of smart-contracts through a network of computers synchronized by
consensus mechanisms aims to replace the need of middle-man for financial transaction in a
digital age. Thus, the trust and functionality depends solely on the correct execution of the
smart-contract bytecodes that are stored on the Ethereum blockchain.
Until this bytecode is transformed from a high-level programming language into an executable
bytecode, a compiler has to perform several seemingly obscure operations. Although the
compiler is maintained and refined regularly by a large community of developers and has
been integrated into a variety of development-environments and has compiled the majority of
smart-contracts that administer billions of dollars, there is no comprehensive documentation
on what exactly happens at each step in the compiler.
One special component of the compiler, which will be one of the main topics of the thesis, is
the optimization of the smart-contract bytecodes with regard to their execution-costs. The
most popular smart-contract alone payed over 12 million dollars last month in execution-costs
to the Ethereum network2.
The use of this inconspicuous optimizer when generating smart-contract bytecodes with
the compiler has many mostly unknown effects on other research-domains. These include
for example bytecode-analytics, which is becoming increasingly relevant as the size of the
Ethereum ecosystem grows rapidly. Most studies, however, do not take the impact of the
Solidity optimizer into consideration when determining for example the set of unique smart
contracts. However, these assumptions of unique smart-contracts are used in the field of
security-analytics for security audits and vulnerability research, in quantitative-analytics for
transaction tracking or in usage-analytics for analyzing smart-contract interactions.
In this bachelor thesis we will therefore take a closer look at the compiler and the optimizer

1https://defipulse.com/
2https://ethgasstation.info/
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1 Introduction

and shed light on the still relatively unknown impacts and implications of the Solidity
optimization.

1.2 Research Questions

In this thesis we will take a closer look at the different optimizers of the Solidity compiler
and their effects on the compiled bytecode. Furthermore, implications of modifications in
the bytecode through the optimizers are evaluated. We identify the following three research
questions, which we aim to address in this bachelor thesis. In order to provide structure to
our thesis, we will try to address these three questions consecutively and, where necessary,
include relevant background information.

1. What are the internal workings of the bytecode-optimizers in the Solidity compiler?

A detailed documentation for the internals of the compiler with respect to optimization
will be provided, which does not yet exist in such an comprehensive form.

a) Of which sub-optimizers does the bytecode-optimizer of the Solidity compiler
consist and what is their functionality?

b) Which bytecode-sections get optimized in what way of the compilation-process?

2. How does enabling the optimization in the compiler-instruction modify the byte-
code in general?

On which bytecode-sections and opcode-patterns can we identify optimizations by the
bytecode-optimizer and distinguish therefore optimized bytecodes from non-optimized
bytecodes?

a) How do the compilation-parameters affect the optimization-process of the compiler
and the resulting bytecode?

b) Which opcode-patterns and bytecode-methods can be simplified through setting
optimization in the compiler-instruction?

3. How many bytecodes and therefore smart-contracts are redundant regarding their
functionality due to different or missing optimization?

Redundancies in smart-contract bytecode-sets of the Ethereum blockchain are to be
detected in order to improve the quality of existing data sets.

a) What design could a re-optimizer have and what restrictions on the re-optimization
are there?

b) In which way do the bytecode-sets being analyzed need to be limited?

1.3 Methodology

The work presented can be divided into to following phases: In the beginning of the thesis in
our discovery-phase, the questions regarding the bytecode-optimizers were analyzed and the
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1 Introduction

resulting redundancies on the Ethereum blockchain were discussed. Following, background
and literature research was conducted on the relevant topics regarding the fundamentals of
Ethereum, the EVM-bytecode and the Solidity compiler. Afterwards, the Solidity compiler
and its functioning was studied in detail directly from debugging an actual build-target from
the implementation of the Solidity compiler (version 0.5.3) and resulting modifications of the
bytecode-sections were analyzed. Last but not least a feasible design and resulting challenges
of such a re-optimizer to detect redundancy of bytecode due to missing optimization, were
discussed. Finally, the research findings were consolidated and additional research-objectives
were formulated.

1.4 Structure

The rest of this thesis is structured as the following: First, in chapter 2, we provide essential
background information on Ethereum, the Ethereum Virtual Machine and EVM-bytecode in
order to be able to address our research questions, which will be referred to throughout the
entire thesis. In chapter 3, we analyze the different optimizers of the Solidity compiler and de-
scribe how to use them with the compiler-instructions of the Solidity-commandline-compiler.
Then, in chapter 4, we discuss the individual bytecode-sections and what functionalities
they provide for the EVM. Afterwards, we describe the effects of the several optimization-
methodologies on the different bytecode-segments and opcode-patterns in chapter 5, where
we discuss in detail, how differences in optimization can be identified in the bytecode. In
chapter 6 we provide a feasible design for a re-optimizer to detect potential redundancies in
the bytecodes on the Ethereum blockchain due to missing bytecode-optimization. Finally, we
summarize our results of this thesis and propose follow-up research-questions in chapter 7.
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2 Ethereum Foundations

2.1 Ethereum Fundamentals

Ethereum is a blockchain-based system operating on a distributed computing-network. The
open-source software-system Ethereum has several components that make the system unique
and enable new kinds of innovative applications. One of these components is a peer-to-peer
(P2P) network over which all participants share messages and new states. This exchanged
information is interpreted internally as messages. At its core, each participant operates a state
machine, which is synchronized between all participants in a transparent way following a
consensus-mechanism. This consensus-mechanism (currently proof-of-work as of November
2020) is based on a game-theoretical incentive scheme that enforces cooperation among all
participants in a network of rational economic actors. Several different clients of the network
were developed independently of each other and are currently part of the network [1].
In contrast to other decentralized platforms, Ethereum is a general-purpose blockchain build
for decentralized applications. Unlike Bitcoin, as an example, Ethereum can easily change its
state through a special designed high-level programming language [2].
The native currency of Ethereum (that makes the game-theoretical incentive-structure work)
is called ether (ETH). Ether can be subdivided into 1018 Wei, or alternatively 109 Gwei [3].
Central to the Ethereum network are wallets, a application that, among other things, stores a
public and private key-pair and thereby authorizes transactions in the Ethereum network for
a corresponding account [2].
The next section deals with transactions in more detail. Topics such as Elliptic-Curve
Cryptography and the functionality of the consensus-mechanism are central components of
the Ethereum network, but play a secondary role to the research questions dealt with in this
thesis. For this reason, these and other fundamentals of Ethereum not relevant to this thesis
will not be discussed any further.

2.2 Ethereum Transactions

From a technical point of view, a transaction is just a cryptographically signed instruction for
the EVM that can change its singleton state. Two types of transactions can be distinguished:
on the one hand transactions which are instruction-calls in the form of message-calls for the
Ethereum Virtual Machine to change the state; and on the other hand, transactions which are
used to deploy a new smart-contract code to an associated account (see section 2.1) [2].
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2 Ethereum Foundations

2.2.1 Transaction Components

The components of an Ethereum transaction were specified in the original Ethereum Yellow-
paper by Gavin Wood [2]. A transaction usually contains the following elements:

• The nonce represents the number of transactions confirmed on the blockchain that
were initiated by the account and is calculated dynamically. A nonce, which, in
contrast to Bitcoin, is necessary in an account-based protocol like Ethereum to prioritize
and manage transactions and to uniquely identify transactions to prevent duplicate
transactions.

• The gasPrice is the number of Wei-units that the sender is willing to pay per unit of
Gas (see subsection 2.4.5). This allows the originator of an instruction to determine
how much he wants to pay for the execution of an instruction, for a defined number of
gas needed. The higher the price (in Gwei) paid per Gas, the faster the transaction is
executed and, therefore, confirmed.

• The gasLimit is a specified fixed amount of Gas (see subsection 2.4.5), which the initiator
is willing to spend at most in order to execute the instructions. This is especially useful
because before a smart-contract is executed, the number of instructions, that are going
to be executed, can never be determined in advance.

• The recipient, which is indicated by the label to. This can be a 160-bit address of the
recipient of the instruction-call or in case of a code-creation transaction the zero address.

• The value element defines the number of Wei-units to be transferred between the
accounts of the sender and the recipient of the instruction-call. If the instruction-call is a
contract-creation transaction, the smart-contract account is initialized with the amount
of Wei.

• The values for v, r, s represent the ECDSA digital signatures of the instruction from the
sender that initiated the instruction. For the exact functionality of ECDSA signatures
reference is made in the following work [4].

The last element is an array of theoretically unlimited length with a binary data-payload. Its
utilization depends on what type of transaction is being made. In case of a contract-creation
transaction the element is referred to as init, which contains the deployment bytecode. For
the exact functionality of the contract-creation transaction, please refer to subsection 2.2.3.
However, if the transaction is a message-call instruction, it is referred to as data element (as
shown in Figure 2.1). In the subsection 2.2.2 we will explain in more detail the standards of
the data-payload for a message-call.

The public key of the sender of the instruction call can be inferred from the v,r,s components
of the ECDSA signature. Because of that the address of the sender does not have to be
explicitly specified as an element in the transaction and. Similarly, all the other data (such as
the hash of the transaction or the block number in which the transaction is contained) can be
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2 Ethereum Foundations

Figure 2.1: An Ethereum transaction consists of 6 default fields and 2 specific payloads that
are dependent on the type of transaction [5].

determined dynamically by an Ethereum node and would be therefore redundant in the the
transaction-payload [1].

The transaction is serialized in a binary form using the Recursive Length Prefix encoding
[6]. Due to the specific lengths of the components, the element-names can be dispensed for
the raw transaction.

2.2.2 Transaction Data

In transactions to smart-contract accounts, the data-element is interpreted as a contract-
invocation by the EVM. This contract-invocation is interpreted as a function-invocation by
most smart contracts, which corresponds to a function call of the smart contract. The data
payload for the function-invocation is used to select a certain function with the function-
selector and to pass arguments to the function.
The function-selector consists of the first 4 bytes of its Keccak-256 hash of the specification
of the function name and the data types of the arguments. The arguments are packed in
brackets and are separated by commas. This value is hashed as a string and thus can be used
as a unique identifier for the function of the smart-contract to invoce, for example:

$ web3.sha3("withdraw(uint256)")
’0x2e1a7d4d13322e7b96f9a57413e1525c250fb7a9021cf91d1540d5b69f16a49f’

Then, the value (with the web3-client the identifier results to 0x2e1a7d4d) to be passed is
appended using the big-endian convention as a hexadecimal-value. This value is padded to
the full length of the corresponding data-type that is expected by the smart contract [5].

7



2 Ethereum Foundations

2.2.3 Contract Creation Transaction

A special type of transaction is the contract-creation transaction, which always has to be sent
to a specified address, known as the zero-address (0x0). The address does not correspond to
any EOA or a certain smart-contract account. It is only a signal to the EVM to execute the
instruction as a contract-deployment instruction.
This instruction is used to execute the given data-payload from the init element by the EVM,
which in this case is the deployment bytecode of a smart-contract (for the detailed structure
of the deployment-bytecode, please refer to section 4.2). In essence, when the deployment-
bytecode is executed, the runtime-bytecode wrapped in the deployment-bytecode is being
stored on the blockchain and the first state of the smart-contract account is being initialized
by the constructor in the deployment-bytecode (as mentioned in subsection 2.2.2, the smart-
contract with the specified value element in the transaction) [1].
In general, transactions are essentially just instructions for the EVM that change the singleton
state of the account. For the sake of simplicity, however, in the following we will refer simply
to them as transactions.

2.3 Smart Contracts

As indicated in section 2.2, there are two types of accounts in Ethereum. One type are
Externally owned accounts (EOAs) that are controlled and managed by a user with the help
of a wallet and a corresponding private key. The second type are smart-contract accounts,
controlled by software-code and without associated private keys. This software is executed by
the EVM and is referred to as a smart-contract. These type of accounts perform actions only in
response to an incoming instruction as the smart contract gets triggered. Every smart-contract
account has its own persistent storage where it stores its own variables and functions (a
key-value store with 256-bit keys and 256-bit values). This memory can only be accessed from
the smart-contract, but is readable to everyone [7].
Smart contracts have typical characteristics such as immutability, determinism, as well as
being typically executable on the EVM. However, the term "contract" does not refer to any
legal obligation. Smart contracts are limited in their context to the Ethereum singleton state,
the calling transactions and information about the blockchain.
Smart contracts can be deployed on the Ethereum blockchain with a contract creation transac-
tion, as described in subsection 2.2.3. The contract can be identified by an Ethereum address
that can be derived from the contract creation transaction. The execution of smart-contract
functions is single-threaded and atomic. This means that the instruction either succeeds and
takes place or fails and returns to its original state. However, the instruction is still kept in
the block chain and the gas used will not be refunded.
Due to the immutability of smart-contracts, the software cannot be modified once deployed. A
change of a smart contract can only be achieved by re-deploying it. Deleting a smart contract
is possible with the SELFDESTRUCT opcode, but the transaction history remains unchanged
on the blockchain. In practice, software-patterns are used to update smart-contracts despite
their immutability. The restriction is bypassed by using proxy-contracts that reference other

8



2 Ethereum Foundations

smart contracts, which can be replaced that execute the actual instruction [7].

2.3.1 Ethereum High-Level Languages

Smart contracts are executed by the EVM (see section 2.4). The EVM executes instructions in
the form of EVM bytecode (see chapter 4), similar to the Java Virtual Machine (JVM) working
with Java bytecode. This has the advantage that the execution of smart contracts remains
independent of the native platform and hardware.
This bytecode (both abstractly and in the actual C++ implementation) is a stream of assembly
commands that the Ethereum Virtual Machine is capable of executing. It is possible to directly
implement the smart-contracts in bytecode in the implementation-process, just like for any
other processor or virtual machine. However, the implementation directly in bytecode is
much more challenging. Due to the increased complexity, there is also an increased risk of
security vulnerabilities, which would be particularly critical for smart-contracts [1].
For the mentioned challenges several compilers have been introduced, which can translate a
respective programming language into EVM bytecode. Because of the minimalistic architec-
ture and the technical restrictions of the EVM (see section 2.4), completely new compilers
have been built instead of reusing existing programming languages. As a result, a number
of special-purpose high-level languages have emerged for programming smart contracts
executable on the Ethereum Virtual Machine. There are functional programming languages
like LLL as well as imperative programming languages like Solidity, Vyper or Serpent. In the
following section the most popular and widely used high-level language will be discussed in
more detail [5].

2.3.2 Solidity

Solidity is an imperative high-level quasi turing-complete programming language with a
syntax similar to JavaScript. Solidity can be compiled with the Solidity compiler to EVM
bytecode. The language is statically typed and supports all established features of common
programming languages like object-orientation, inheritance or polymorphism [8].
The Solidity compiler compiles Solidity source-code into EVM bytecode. It also has many
additional features like a flexible optimizer (see chapter 3), ABI specification output (see
subsection 2.3.3) or meta-data output. As Solidity is constantly being improved, changes are
made to the Solidity compiler and development is constantly in progress. This has resulted
in different compiler-versions over time. The different Solidity compilers correspond each to
a different version of the Solidity programming language, which are not always downward
compatible. To deal with this problem, a compiler-directive named version-pragma exists in
Solidity. This version-pragma defines the compatible compiler-versions for the given Solidity
source-code. This pragma-information is not compiled by the compiler into EVM bytecode, but
is only used to check for compatibility. One instance of the Solidity compiler is the build of
the Solidity repository, which is the Solidity-commandline-compiler solc [9]. The exact syntax
and functionality will not be discussed in this thesis.
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2 Ethereum Foundations

2.3.3 Application Binary Interface

An Application Binary Interface (ABI) is a specification of an interface between different
software-modules. It specifies which data-structures and which functions can be called
from the bytecode, since this information is not directly comprehensible from the encoded
bytecode. By contrast, an API defines the interface of a software-module in a high-level
programming language such as Solidity. Since smart-contracts are stored as bytecodes on
Ethereum blockchain, the ABI is of relevance in this context.
Each smart-contract can be specified with an ABI in order to define which instructions and
thus which function-calls are applicable to the smart-contract. This ABI specifies as an array
of objects in JSON format which function-calls and which events (events will not be discussed
in detail in this thesis) the smart-contract identifiers supports. The ABI describes among other
information which arguments are expected by the function and which return-types will be
given back [9]. This ABI is typically generated by the Solidity compiler. With the flag –abi the
Solidity-commandline-compiler can produce it, as shown in the instruction below:

$ solc --abi Example.sol

2.4 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is the central component of the Ethereum protocol,
which changes the global singleton state while performing instructions. The EVM is thereby
similar to a virtual computation-machine like the Java Virtual Machine (JVM) or the virtual
machine of Microsoft’s .NET framework, which converts bytecode into abstracted virtualized
computational operations. In the context of Ethereum, the EVM interprets and executes the
deployed bytecode of a smart-contract from a given account. The EVM is not required for
simple instructions like a value-transfer instructions [1].
The EVM has a minimalistic stack-based architecture with a word-size of 256 bit. The relatively
big word-size allows the EVM to perform hash-operations or elliptic-curve cryptography
operations without the need to use more than one stack-element for results of these operations.
The virtual stack has a size of 1024 elements on which the main operations are performed. In
addition, there are also other memory-sections like the volatile memory and the persistent
storage (see subsection 2.4.1 for more details) [2].
The EVM is a virtualization of a machine that is limited to computation and memory-storage.
Other virtual machines such as the JVM provide access to the environment like the operating
system through system-calls or the actual hardware, which is not possible with EVM. This
is an intentional design decision to keep the global singleton state of the EVM as indepen-
dent as possible from external factors. The EVM also has no hardware-support and no
system-interface, so you can interact with the virtual machine completely abstracted from
the underlying hardware and operating system. If errors occur on the machine, such as
an out-of-gas exception or a stack-underflow, the changes of the atomic instructions to the
global singleton state are reversed. With the introduction of the concept of Gas, the EVM is
quasi-turing complete (see subsection 2.4.5) [2].
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Since there is only a specification of the EVM in the Ethereum Yellowpaper, several imple-
mentations in different programming languages have been made and are used in the different
clients. Due to the simplicity of the EVM architecture and the formal specification, some of
the implementations are quite compact with just over 2000 lines of code [3]. Among others,
the most widely used EVM implementations are:

• Py-EVM (Python)

• EVMC (C++, C)

• ethereumjs-vm (JavaScript)

• eEVM (C++)

• Hyperledger Burrow (Go)

The EVM is single-threaded because the instructions are ordered externally by the clients.
Therefore, the EVM does not support scheduling capabilities, which is comparable to the
execution of JavaScript that is executed fully in sequence [1].

2.4.1 Memory-Sections

The EVM has various memory-sections where it can store data, each with a special purpose.
First, as mentioned above, the EVM has a stack with a size of 1024 elements with 256 bit
words each. The stack can be accessed with swapping-operations to a maximum of the top 16
elements at the same time. Most of the operations are limited to the top two elements. The
stack replaces the need for registers. Operations are executed directly on the stack. Of course
it would be also possible to store computational data on one of the other memory-sections.
However, this takes much more effort and, thus, costs more Gas (see subsection 2.4.5) [9].
The 256-Bit word-size of the stack-elements are relatively big in order to efficiently support
elliptic-curve operations and Keccak256-Hashes without the need to use more than one stack-
element [2].
The volatile memory of the EVM is used for intermediate storage of values outside the stack
and for a more flexible memory management. It is used for each of every message-call
instruction and is cleared after every call. The memory can be addressed byte-wise in a linear
way, but is limited to addressing 256-bits per call. New 256-bit memory-elements can be
dynamically allocated, but the costs increase quadratically for each new memory-element. The
volatile memory is initialized with zero-values. This type of memory would be comparable to
the RAM of a Von-Neumann architecture [10].
To store data to the memory of the EVM the MSTORE operation is used which uses two
arguments. The first argument is the address of the word in memory where the value will be
stored and the second is the value that is to be stored. Both arguments are expected to be on
the stack [1] (for more detailed information regarding the Opcode-instructions please refer to
subsection 2.5.2).
There is also a permanent memory, which is called storage. A storage is allocated for every
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account. This storage is persistent over different function-calls and transactions. As already
mentioned in this thesis, the storage is a key-value map that maps 256 bit values to 256 bit
values. Access to this storage area is especially complex and therefore particularly expensive
in terms of Gas (see subsection 2.4.5). The storage can only be accessed from the associated
smart-contract, however the storage is visible to everyone [9].
Compared to the Von-Neumann architecture, this memory-section corresponds to the ROM.
The bytecode of a smart-contract that gets executed by the EVM is to be stored permanent-
memory. In contrary to a virtualized Von-Neumann architecture the data is not stored in an
accessible and mutable memory-section in the general memory but in a special memory-
section, which can be accessed only by certain opcodes and is called the permanent memory-
section [2].
Due to this division into stack, volatile memory and permanent memory, this memory-
separation looks rather like a type of a virtualized Harvard architecture [2]. The division
of memory areas according to Harvard architecture primarily reflects the required security-
measurements of the EVM.

2.4.2 Global State

The central task of the EVM is to transfer the global singleton state to another valid global
state by means of valid instructions of smart-contract executions. The global state of Ethereum
refers to all state accounts of all recorded addresses. The consensus-mechanism of Ethereum
(will not be discussed in this thesis) creates a global singleton state in the entire network [5].
Each account has its own information about the balance, the nonce, the permanent storage
and the program code (see subsection 2.4.1), which is the bytecode in case of a smart-contract.
A EOA is also a normal account and, thus, part of the global state, which has no program
code and an empty storage (as seen in Figure 2.2). The account balance indicates the number
of Wei that are controlled by the account. The Nonce reflects the number of successful
transactions in case of an EOA or the number of smart-contract creation instructions in case
of a contract-account [11].

Figure 2.2: State of an EOA on the left and of a contract-account with EVM bytecode storage
for contract-data on the right [5].

The permanent storage is the memory section used by smart-contracts, mapping 160-bit
words to 160-bit words (see subsection 2.4.1). This information represents in its entirety the
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global state of the EVM. Another physical difference in the storage between the accounts is
also the hash of storage-trie’s root (as shown in Figure 2.2), which can be derived from the
transaction and, thus, is not actually a distinctive property of the state of its account [12].
This storage-trie’s root is a 256-Bit Keccak-hash value stored in the account storage in the
Ethereum state. Also there is the code-hash, a 256-bit hash value of the corresponding
bytecode of the account. This code-hash (codeHash) is also stored on the Ethereum state. Since
the bytecode of an account naturally doesn’t change, the code-hash value also doesn’t change
[5].

2.4.3 State Transition

There are several perspectives on a transition from one state to another state. In the following
we shall consider Ethereum from a theoretical point of view, as a transaction-based state
machine.
Ethereum can be described as a transaction-based state-machine as described in the Yellow-
paper [2]. The global singleton state corresponds to the current state σ of Ethereum. Valid
instructions like message-calls or simple value-transfers can change the current state σ to the
next global state σ’ (as displayed in Figure 2.3).

Figure 2.3: Blocks of transitions change the global singleton state through the addition of
finalized blocks [5].

This means, transitions between different states are triggered by valid operations of the EVM
or value-transfers. From the theoretical point of view, single instructions do not change the
global state of Ethereum, as instructions are bundled in groups. According to the actual
implementation of Ethereum, only a set of instructions bundled into a block change the
global state of Ethereum sequentially, as shown in Figure 2.3. For this reason, Ethereum
is rather a sequence of blocks with instructions, where the subsequent block (child-block)
Bb + 1 refers to the predecessor (parent-block) Bb with a hash-reference. The blocks contain
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the instructions that cause the state to change. More specifically, this means that Ethereum
consists of a sequence of blocks that refer to the successor with a hash-value. The blocks
contain instructions to change the global singleton state [5].

2.4.4 Execution-Process of the EVM

If a message-call invokes a smart-contract function as an instruction, the EVM is initialized
with the account-data as well as the transaction-data and the context of the Ethereum envi-
ronment (e.g. the current block-information). The bytecode of the smart-contract corresponds
to the ROM of the EVM while the permanent storage is the RAM. A program-counter is
initialized with zero. The volatile-memory is initialized with zero and the bytecode is loaded
into the ROM in the permanent storage.
In general, the EVM processes each instruction of the bytecode sequentially, increases the
program-counter after each instruction and then continues with the next instruction of the
bytecode until there are no further instructions left. With each instruction the Gas-supply
value is subtracted with the respective Gas costs of each instruction of the bytecode. If the gas
cost of the transaction exceeds the Gas supply, an out-of-gas exception is thrown and the old
state is reinstated. In the case of an error, the nonce of the sender will be increased and the
used Gas will be spent, so that a failed instruction will not be completely without effects [1].
Before an instruction is executed and an old state is changed to a new state by a transaction,
some basic conditions are being observed. First of all, it is checked if the transaction passes
basic conditions, i.e. if the signature is valid, if the nonces of the sender and the recipient are
correct and if the value to be transferred is available to spend. Then, the transaction costs are
calculated by multiplying the start-Gas with the chosen gasPrice. The address of the sender
is derived from the signature. The amount of gas available for the instruction is calculated
afterwards. If the account is a contract-account, the bytecode of the smart-contract will be
executed. In case the account is an EOA, the account receives the value. If the transaction
was successful, the unused gas is returned to the sender of the instruction [13].
The following Figure 2.4 shows an example of a message-call transaction of a smart-contract
that changes the global state.

2.4.5 Gas

The EVM is quasi-turing complete with the EVM bytecode that is to be executed. In simplified
terms, a programming language is turing-complete, if every possible program can be executed.
This would have disastrous consequences for Ethereum and the EVM because then even
programs that would never end (e.g. with an endless loop) could be executed on the EVM.
Because of the non-resolvability of the halting-problem, it cannot be determined in advance
whether a program will terminate, which is why EVM explicitly cannot be turing-complete.
Since EVM is a single-threaded virtual machine, a new concept must be introduced to
eliminate attack-vectors that attempt to execute non-terminating bytecode.
The solution is to terminate the program without any result after a certain predefined number
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Figure 2.4: The Ethereum state transition between two different states takes place while
executing a transaction [13].

of computational operations. This limit can be set variably up to a certain maximum (block-Gas
limit) [1].
Gas is the unit of Ethereum to measure computing power and memory consumption required
by the EVM from an operation in bytecode. For each transaction there are two types of gas
that are paid. One is a fixed amount of 21,000 gas, which always has to be paid. The other
is a variable amount, which depends on how expensive the execution of the bytecode is
for the EVM and how much memory is being used. Every single opcode in bytecode (see
subsection 2.5.2) is defined by a certain amount of Gas-price. These amounts were decided
by the developers of EVM and are separated into different tiers. These range from zero tier
(0 gas) with the lowest gas costs up to base tier (2 Gas), very low tier (3 Gas), low tier (5 Gas)
and high tier (10 gas). In addition, there are special tiers, where the costs are subject to more
complex rules (for example the instruction SSTORE) [14].
It is essential that the Gas values match the actual computing power and memory consumption
as close as possible. Changes were made in 2016 as part of the Ethereum Improvement Proposal
(EIP) 500, where the Gas values of selected input and output-intensive operations had to be
adjusted. The mismatched classification of the operations, which were actually much more
expensive to perform for the given Gas-value, resulted in Denial of Service attacks and, thus,
congesting the network for too unfairly insufficient Gas costs [1].
The cost of the entire execution of the instruction is the sum of the cost of each instruction in
addition to the fixed 21000 Gas per transaction [14].
Even though the Gas is valued by the computing-power and the memory-consumption of
the EVM, there is also a variable price for Gas measured in Ether. With each instruction, the
transaction input has to specify how much the sender is willing to pay for the Gas, measured
in Gwei. Miners prioritize transactions with a high gas-price, as this is where they earn the
most in mining-rewards [1] (more details behind the consensus mechanism are not discussed in
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detail).
In a transaction, the originator of the instruction specifies a Gas-price measured in Gwei that
he is willing to pay and sets a Gas-limit, which is the maximum number of gas units-that
the EVM is able to consume before throwing an out-of-Gas exception (see subsection 2.4.4).
However, Gas can only be purchased in the context of a transaction, since its unit only exists
in the EVM. Gas cannot be bought in the form of a reserve and only serves as an internal
accounting-unit of the EVM [5].
For each block of transactions there is a maximum amount of Gas that can be consumed
by all instructions combined, known as the block-Gas limit. This limit restricts how many
transactions can be included in a block. Unlike Bitcoin, which limits the block-size based
on the physical size of the transaction-data in bytes, Ethereums block-size depends on the
computational-capacity and memory-consumption of the EVM. The current block-Gas-limit
is 8 million Gas for each block. This is equivalent to 380 ordinary value-transfer transactions,
which by default consume 21,000 Gas [3].

2.5 EVM Bytecode

Solidity source-code is compiled with the Solidity compiler into EVM bytecode. The bytecode
consists of a stream of hexadecimal values in big-endian byte-order. EVM bytecode is, there-
fore, a machine-language that can be interpreted and executed by the EVM. To disassemble
the bytecode there are always two bytes of the bytecode used that correspond to a given
opcode. That opcode represents a part of an instruction for the EVM. There are opcodes,
which form an instruction with an immediately subsequent value. Some opcodes are a valid
instruction without a following value (the exact scheme of instructions with opcodes and
values is discussed in detail in subsection 2.5.2).
The EVM bytecode can be separated relatively easily into 3 main components: First, the
deployment-bytecode as a result of the compilation process. Second, the runtime-bytecode,
that is embedded in the deployment-bytecode and there is the meta-data hash at the end of
the deployment-bytecode [10]. The exact format and its description will be explained in more
detail in chapter 4.

2.5.1 Solidity Compiler

As mentioned before, it is only possible to compile Solidity source-code with a Solidity
compiler. For this purpose the build-target Solidity-commandline-compiler solc is often used.
The solc-compiler can generate different outputs from the Solidity source-code. In addition to
the regular deployment-bytecode, the compiler can directly generate the runtime-bytecode
or the ABI of the smart-contract. Moreover it can generate outputs in the form of binaries,
assembly, opcodes or even an abstract-syntax-tree to estimate the use of Gas, depending on which
tag are set [9].
Using the –opcode tag, the raw stream of opcodes is output:

$ solc BytecodeDirectory --opcodes SourceFile.sol
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As an output the SourceFile.opcodes is created in the folder BytecodeDirectory. This file will
display the opcodes in sequence using the optional values in the form of characters. Typically
the content of the opcodes file always starts with "PUSH1 0x60 PUSH1 0x40 MSTORE CALL-
VALUE ISZERO..." (will be explained in detail in subsection 5.1.1).

More detailed information of the bytecode is output with the –asm tag. This outputs a
more comprehensive assembly-items, containing for example, jump-marks and tags, which are
implicitly evaluated by the EVM as storage-addresses in the opcode-stream [9].

$ solc BytecodeDirectory --asm SourceFile.sol

The command above generates the assembly-items in the SourceFile.evm file. This command
generates the assembly-items in the SourceFile.evm file. The content of this file usually looks
like the format as follows:

mstore(0x40, 0x60)
jumpi(tag_1, iszero(callvalue))
0x0
dup1
revert

tag_1:
...

The detailed inner-workings of the assembly-items as well as of the opcodes will not be
discussed in this thesis. However, more general information about the opcodes can be found
in the subsection 2.5.2.

The relevant output for the payload for a contract-creation transaction is created with the –bin
flag. The output is the opcodes in a binary format, that the EVM can interpret.

$ solc BytecodeDirectory --bin SourceFile.sol

This command generates the hex-serialized binary bytecode. The output always starts with
"60606040..." for a valid deployment -bytecode, in most Solidity compiler-versions. The
command can also be used to directly output the runtime-bytecode, which usually also starts
with the same output in most compiler-versions. This bytecode in the form of hex-serialized
binary bytecode can be added as data-payload to a transaction [9].

$ solc BytecodeDirectory --bin-runtime SourceFile.sol

There is also the possibility to optimize the opcodes in addition to the standard optimization-
process using the –optimize tag, which will be discussed in great detail in chapter 5 [9].

2.5.2 Structure

This section discusses the structure of the bytecode in more detail. For simplicity reasons is
the output of the opcode-stream demonstrated.
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Opcodes

An opcode is a certain constant in bytecode with a length of two bytes in case of an EVM
bytecode. The 8-Bit 0x60 corresponds for example to the opcode PUSH. The EVM interprets
only the binary payload in hexadecimal notation for simplicity, the opcodes are replaced with
their identifiers.
In simplified terms every opcode can either add elements to the stack, remove elements from
the stack or a combination of both in the context of an operation. The EVM has a collection of
opcodes that can be separated into several classes. These include:

• Arithmetic and logical operations (e.g. ADD, MUL, XOR, NOT)

• Runtime-environment operations (e.g. GAS, CALLER, GASPRICE, CODESIZE)

• Operations to access memory (e.g. PUSHx, POP, MLOAD, MSTORE, SLOAD)

• Control-Flow operations (e.g. STOP, JUMP, JUMPDEST)

• Logging operations (e.g. LOGx)

• System operations (e.g. CREATE, STATICCALL, INVALID, SELFDESTRUCT)

• Block-operations (e.g. BLOCKHASH, DIFFICULTY, GASLIMIT)

The arithmetic operations are used with the highest stack-elements as operators. For example
the opcode ADD is adding the upper two elements and places the result back on the stack.
Logic-operations like LT (less-than) or XOR work bytewise on the operands and use internal
flags, which are set in the EVM. Each of the storage-areas can be accessed using different
opcodes, depending on the type storage. With PUHSX elements of size X can be put on the
stack, while they can be removed with POP. MSTORE and MLOAD can be used to access the
volatile memory, while SLOAD and SSTORE can be used to access the permanent storage.
Controlflow operations control the sequence of opcodes and choose the function to jump to.
By this the program-sequence are also able to jump from the bytecode-wrappers into the
function-bodies (see subsection 4.3.2).
The EVM can determine EVM-internal information of the environment and the block using
certain opcodes. For example with the opcode CALLER the address of the EOA or contract-
account, which initialized the instruction can be loaded. With the TIMESTAMP the EVM can
get the timestamp of the block that the instruction was included in [1].

Complete Bytecode Instructions

An opcode by itself is in many instances not a complete bytecode-instruction. For some
opcodes the EVM expects a value in the bytecode-stream directly followed by an opcode for
a valid interpretation of the instruction. The EVM can infer the length of the value in bytes
implicitly from the opcode. For example, the opcode PUSH1 expects a value of one byte [10].
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A list of all opcodes of the EVM with the expected values and the operation to execute can be
found here1.

2.6 Yul Intermediate language

Yul, also formerly known as JULIA, is an intermediate language, which can be compiled
from Solidity source-code to bytecode of different platforms. This intermediate language
is currently still under development and is used in some of the newest Solidity compilers
as an experimental feature. At the moment, support for the platforms EVM 1.0, Ethereum-
Webassembly and EVM 1.5 is anticipated. For inline-assembly (is not discussed in this thesis)
in the Solidity programming-language the intermediate language Yul is already used [9].
With Yul different high-level optimizations are possible, which are difficult to implement by
the bytecode-optimizer (see chapter 3). In contrast to bytecode, the Yul language is easier to
read, the program flow is clearer to understand and the translation into bytecode is more
direct. This allows to optimize sections of bytecodes within the Yul intermediate-language.
This is difficult to do when using the normal bytecode-optimizer because the context of
opcode-instructions in a program is often not easy to grasp [9].
The Yul intermediate-language abstracts from direct memory accesses like SWAP, MSTORE or
SSTORE and replaces program flow commands like JUMPDEST, JUMP and JUMPI with "for",
"if ” and "switch" commands well established in standard high-level programming languages.
Furthermore, functional statements are used to demonstrate, which operations are associated
with which operands. For example, the bytecode-stream "7 Y X ADD MUL" for a stack is
rewritten to the functional-command MUL(ADD(X, Y), 7) [12].
Yul source-code can also be compiled with the solc Solidity compiler. This is provided by the
following command (for the exact specification of the Yul intermediate language, please refer
to the Solidity documentation of Yul [9]):

$ solc BytecodeDirectory --strict-assembly SourceFile.yul

1https://github.com/crytic/evm-opcodes
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An essential part of the Solidity-commandline-compiler solc is the optimizer. More precisely,
there is a variety of different optimizers and sub-optimizers, each optimizing for different
parameters used in different compilation-stages. The optimization of the Solidity compiler
and especially its usage is probably the most misunderstood of all features. This is the reason
for taking a closer look at the structure and specific usage of the Solidity compiler. In the
context of this thesis references to the source-code of the Solidity compiler are made and
optimization processes by debugging the compilation processes are described.
For the basic structure of the optimizer and its usage, we will refer to the latest compiler
version (0.7.4). In the context of the bytecode optimizer and particularly in chapter 5 (which
deals with changes of the bytecode through optimization) the compiler version 0.5.3 is referred
to, because of no interference of the Yul-optimizer. The specific reasons for this decision will
be discussed in more detail at the relevant points.
The optimization-process by the Solidity compiler can be separated into two different op-
timizers: the first one is a bytecode-optimizer, which performs optimizations based on
opcode-streams after the general compilation-process and the second is the Yul-optimizer,
which optimizes on the level of the Yul-intermediate-language relatively at the beginning of
the compilation-process [9].

3.1 Usage of the Optimization in solc

To run all optimization-steps that are available from the compiler, the –optimize tag must be
appended to the command:

$ solc --optimize --bin SourceFile.sol

The output of the Solidity SourceFile.sol is compiled in bytecode in binary format. By default,
this command implicitly passes another value to the compiler, which is the number of expected
runs for the the smart-contract. This parameter for the optimizer defines, to what respect the
optimizer should optimize the bytecode. The optimizer can either optimize for deployment or
for runtime-performance. In the case the optimizer optimizes for deployment-performance, it
tries to minimize the bytecode-length as much as possible. As the contract-creation transaction
in essence only stores the runtime-bytecode in the permanent-storage once, the shorter the
bytecode is, the less Gas will be consumed. Thereby, the main goal for the optimizer is to
reduce the number of opcode-commands and values as much as possible. So it doesn’t matter
how computation-complex or how memory-intensive the opcode-instructions become.
On the other hand you can also optimize for runtime. Here the bytecode is optimized in
a way that the execution of the deployed bytecode costs as less Gas as possible. Therefore,
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the optimizer tries to simplify the instructions in the bytecode as much as possible. When
optimizing for runtime, however, it does not matter how long the deployment bytecode-string
gets, in other words, how high the costs of the contract-creation transaction are [9]. This
parameter is set manually with the tag –optimize-runs=n in the following instruction:

$ solc --optimize-runs=200 --bin SourceFile.sol

When only the regular –optimize tag in the command is set, the default value is 200. This
parameter is also called runs, which corresponds to the number of expected message-calls
of the smart-contract. Therefore, if a low number of runs is specified, the bytecode is set
to be optimized for deployment. The higher the number of runs is, the potentially longer
the bytecode gets, but also the cheaper it becomes to execute the deployed bytecode in
terms of Gas costs. To put it in a nutshell, the optimization-process involves a trade-off
between optimization of the execution of runtime-bytecode and costs for the contract-creation
transaction in the deployment-process. If a smart-contract is expected to be used with high
frequency, it is reasonable to initialize the parameter with a high value.
Starting with compiler version 0.6.0, the Yul-optimizer will be used per default together
with the bytecode-optimizer if the compilation-instruction involves the –optimize tag. If the
optimization of the Yul-optimizer is supposed to be skipped, the compiler must be explicitly
instructed to do so with the following command:

$ solc --optimize --no-optimize-yul --bin SourceFile.sol

Prior to compiler-version 0.6.0, the Yul-Optimizer was only experimentally included and had
to be explicitly declared to use [9].

3.2 Bytecode Optimizer

The bytecode-optimizer works on an assembly basis. A compiler internal data-structure is
given as input, which corresponds to a stream of assembly-items (described in more detail in
subsection 3.2.2). These assembly-items are reconstructed and returned optimized. In the
following, the internals of the optimizer, the recursive optimization of sub-assemblies and the
optimization-process in the context of the compilation-process are discussed.

3.2.1 Internals of the Bytecode-Optimizer

The bytecode-optimizer essentially consists of a major loop, in which all optimizers are
executed one after another in sequence. The loop is repeated until the sequence of optimizers
have made no modifications to the bytecode in the last iteration1.
The bytecode-optimizer receives parameters for the execution. These parameters contain
all essential information that the bytecode-optimizer requires for execution. These settings
include a flag whether the –optimize tag was set, the number of expected runs, the EVM
version and if the bytecode is a deployment-bytecode or a runtime-bytecode2.

1https://github.com/ethereum/solidity/blob/v0.5.3/libevmasm/Assembly.cpp
2https://github.com/ethereum/solidity/blob/v0.5.3/libevmasm/Assembly.h
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As shown in Figure 3.1, the sub-optimizers JumpDest-Remover, Peephole Optimizer, Deduplicator,
Common-Subexpression-Eliminator and Constant Optimizer are run through in the main loop
in the order I referred to. This main loop is always run through, no matter whether the
–optimize tag is specified or not. So there is always some kind of bytecode-optimization in
the compilation-process. Of the five optimizers, the last three (BlockDeduplicator, Common-
Subexpression Eliminator, Constant ptimizer) are optional, as indicated in the activity diagram in
Figure 3.1. These 3 optimizers are executed in each loop only if the –optimize tag has been
specified.

Figure 3.1: Activity diagram of the bytecode optimization-process.

In the subsequent sections, the functionality of the individual optimization-steps will be
explained in more detail.
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JumpdestRemover

A set of all references is stored and in case of sub-assemblies the references from the parent
assemblies are added (tags referenced from outside). These outside-references are passed
recursively with each sub-assembly exclusively for the JumpdestRemover.
The bytecode stream is matched against the set of references and checked which tags are not
referenced by tags in the code. This unreachable dead-code is then removed until the next tag
appears in the code3.

Peephole Optimizer

The so-called peephole optimizer of the Solidity compiler performs the typical peephole
optimization-process. This optimization procedure searches for very specific and well defined
bytecode-sequences in the bytecode-stream, which can be simplified by other bytecode-
sequences that are pre-defined to the optimizer4.
Hence, the name peephole, as only a small fragment of the bytecode-sequence is examined,
much like viewing out of a peephole at a front-door. In this process, the context of the bytecode
sequences is not taken into consideration and only very specific patterns are searched for in
isolation [15].
In particular, the Peephole-Optimizer in the Solidity compiler applies a variety of algebraic
and logical optimization-techniques. The optimizer bundles operations, streamlines the
controlflow, removes dead-code and improves memory-access-efficiency. In the following is a
brief explanation of the methods used in the peephole-optimization of the Solidity compiler:

• The optimizer scans whether unreachable code (dead code) is part of the bytecode
and removes these sections from the bytecode stream accordingly. In this case all
opcodes after an unreachable JUMP or JUMPI are removed up to the next JUMPDEST.
The optimizer also considers code that follows a STOP, INVALID, SELFDESTRUCT
or REVERT as unnecessary. In this case the code is also removed until the following
JUMPDEST.

• The optimizer performs algebraic simplifications. It searches for algebraic identities,
which are mathematical expressions that lead to the same result for all possible inputs.
If such an identity is found, this algebraic expression will be replaced by a simpler
expression.

• Logical expressions that are linked with NOT and AND are checked for logical sim-
plification. The optimizer checks if AND-conjunctions are not to simplify and always
evaluate to true. Conjunctions of tags with 0xFFFFFFFF are also removed by the
optimizer.

• The controlflow is simplified by immediately placing the target tag on the stack in case
of always-true conditions.

3https://github.com/ethereum/solidity/blob/v0.5.3/libevmasm/JumpdestRemover.cpp
4https://github.com/ethereum/solidity/blob/v0.5.3/libevmasm/PeepholeOptimiser.cpp
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• Operations on the stack are also analyzed and optimized. It is checked whether elements
are pushed onto the stack, which are then immediately de-stacked again with POP. The
optimizer also looks for duplicate SWAP operations on the stack that can be optimized.
Double PUSH-operations on the stack can often be optimized as well. The optimizer
also checks whether sequences of operations on the stack are to be swapped with SWAP,
which are potentially commutative and therefore don’t need to be swapped on the stack.

The entire assembly stream is scanned with the above mentioned methods and optimized
accordingly. The new optimized assembly stream is then returned by the peephole optimizer.

BlockDeduplicator

With the help of the BlockDedublicator, duplicate controlflows such as loops or recursive
calls are compared with each other and optimized or removed where appropriate. During
the optimization-process, virtual tags are added to the assembly-stream, thus, changing
the push-tags. These virtual tags identify the current block of the controlflow-iteration. If
now a block is passed through again, which already has a virtual tag that was added by the
BlockDeduplication, a duplicate recursive call or a duplicate loop was detected.
In order to remove the redundant or unnecessary controlflows, the main-loop of the bytecode
optimizer must be run through again in order to delete the duplicate code-blocks. In the
process, references are made to the appropriate code-position where the first virtual tag was
set, thus, reducing and optimizing the assembly stream5.

Common Subexpression Eliminator

Probably the most comprehensive and sophisticated part of the bytecode optimizer is the
CommonSubexpressionEliminator. This optimizer searches among other tasks for components
that result in the same output given the same input. These components are bundled into
so-called expression-classes. If a component cannot be uniquely assigned to an predefined
expression-class, it is split into simpler expressions and the sub-expressions are assigned to an
expression-class.
This recursive process involves in addition the memory to be stored in the different memory-
sections. The changes of the stored data through the operation-components are noted in a list
and associated with the corresponding expression-classes. These memory-changes are passed
on to the following operation-components. For example, constant instruction-expressions
are converted to constant values hard-coded in the bytecode. It is checked whether a set of
instructions matches another singular instruction in a given set. It is checked if the instruction
expression can be replaced by another instruction expression of the same expression-class [9].
Secondly, with the common JUMP and JUMPI commands a complete control flow of the
whole assembly-stream is created, where each operation-block in the control flow is stored
together with the memory-manipulation of each operation-block. Based on the described
pre-processing (creation of the control-flow and the memory-manipulation mapping) among

5https://github.com/ethereum/solidity/blob/v0.5.3/libevmasm/BlockDeduplicator.cpp
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others the following optimizations are carried out. First, if there are conditional jumps which
always evaluate the same, they are converted to jumps. Second, dependencies of the return-
values of the last operation-blocks are constructed. Thereby it is checked, if operations in the
control-flow that are calculated beforehand in parent-blocks (not needed for the dependency)
can be removed. These steps are done recursively for each block 6.

Constant Optimizer

The Constant Optimizer is the only optimization process of the bytecode optimizer that includes
the expected number of runs of the smart contract in the optimization-process. This is the
compilation-parameter that is specified for the Solidity commandline-compiler solc. The Constant-
Optimizer is passed to the parameters whether it is a runtime bytecode or a deployment
bytecode, for which EVM version it should be optimized and the expected number of runs.
Essentially, constants contained in the bytecode can be rewritten and simplified with a
sequence of simple arithmetic operations on the stack. For example, addresses of the
originator of a transaction can either be hardcoded in the bytecode as a hexadecimal number
or can be calculated dynamically with a number of different operations on the stack. This is
described more in detail in chapter 5, where differences between optimized bytecode with
non-optimized bytecode are being discussed.
These optimization-methods of rewriting constants by dynamic calculations on the stack to
reproduce the constant can be done by the optimizer in any level of complexity. In this context
the process of circumscribing values can be used in all possible contexts and intermediate
values. This, of course, blows up the bytecode massively, because all possible numbers can be
reproduced by diverse operations on the stack. A number of simple operations on the stack
with their associated opcodes reserve much more space in the bytecode than to hardcode a
simple constant7.

Recursion over Sub-Assemblies

The actual optimization-process of the bytecode optimizer works recursively over the assembly-
stream. For each sub-assembly of the assembly-stream, the entire bytecode-optimizer is per-
formed again beginning from the very start. Sub-assemblies are opcode-streams, that cannot
be processed by the controlflow of the native bytecode. For example, these can be assemblies
such as the runtime-bytecode, which is embedded in the deployment-bytecode (see chapter 4)
and is only written in permanent storage. In this case runtime-bytecode as sub-assembly
is never executed in the direct controlflow of the opcode-stream of the outer deployment-
bytecode. However, the runtime-bytecode stream is embedded in the deployment-bytecode
and is fully optimized as a sub-assembly. This subtle feature enables the runtime-bytecode to
be optimized as a sub-assembly of the deployment bytecode when compiling deployment-
bytecode. In case of compiling bytecode for a contract-creation transaction, the embedded
runtime-bytecode is also optimized and can be called after the deployment-process efficiently.

6https://github.com/ethereum/solidity/blob/v0.5.3/libevmasm/CommonSubexpressionEliminator.cpp
7https://github.com/ethereum/solidity/blob/v0.5.3/libevmasm/ConstantOptimiser.cpp
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3 Analysis of the Solidity Optimizers

Another example of a sub-assembly is the creation of a new smart-contract using the bytecode
of an already existing contract. The bytecode of the new contract, embedded in the already
deployed bytecode, is also a sub-assembly, which is also optimized recursively in the original
compilation-process.

3.2.2 Optimization in the Compilation Process

Bytecode-optimization takes place during the compilation process as one of the last steps. Af-
ter compiling the bytecode and appending the meta-data to the smart-contract (see chapter 4),
the settings for the optimizer are initialized and then the optimization method is called.

Figure 3.2: AssemblyItems data-structure in the compilation-process.

At this time of the compilation-process the bytecode is still in the form of an Assembly-Item
data-structure (as seen in Figure 3.3). After the bytecode-optimization the data-structure is
transformed into the specified output like assembly, opcodes or binary. The exact description
of the data-structure in memory at the time would go beyond the scope of this work. However,
parts of the data structure which are necessary for the optimization and which are processed
are to be described.
For the optimization process, a list of assembly-items (m_items) (as seen in Figure 3.2) contain-
ing all assembly-elements is relevant. These assembly-items are divided into different types
(m_type) such as operations, push elements, tags or push data. All relevant information such as
the values (m_data) associated with the instructions or the labels of the tags are located as
attributes with the assembly elements in a map. These attributes are not discussed in detail
due to the limited scope of the thesis and the complexity. The exact instruction of a type
(m_instructions) is an enumeration, which is initialized at runtime with an always different
integer value. This is an inherent property of the programming language C++, that the val-
ues for the instruction enumeration correspond to a different value depending on the runtime.
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Figure 3.3: AssemblyItem data-structure in the compilation-process.

3.3 Yul Optimizer

In contrast to the bytecode optimizer which is described here in more detail, the Yul-optimizer
does not work with assembly, but with the Yul intermediate-language.
By default, the Yul-optimizer uses a number of predefined optimization-processes. This set of
optimization-procedures of the Yul-optimizer can be overridden with the following command:

$ solc --optimize --yul-optimizations dhfoD[xarrscLMcCTU]uljmul

There is a variety of sub-optimizers such as the BlockFlattener, CircularReferencesPruner, Com-
monSubexpressionEliminator, ConditionalSimplifier, ControlFlowSimplifier, DeadCodeEliminator and
many others. In the above written command each character represents a special optimization-
process in the Yul optimizer8.
Unlike the bytecode-optimizer, the order of the optimization methods plays a major role
here, which is why you can specify them by indicating characters in the command. Some
optimization-processes are also required in order to perform other optimization-procedures.
With the square brackets you can specify to repeat the bracketed optimization-processes until
no more optimizations are done. This follows the same concept as the bytecode optimizer.
For detailed background information on the individual optimizers and a complete list with
the respective characters, please refer to the following documentation [9].

8https://github.com/ethereum/solidity/tree/v0.5.3/libyul/
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The bytecode consists of byte-sized hexadecimal values in big-endian notation (network
byte-order). The bytecode is a more compact way of setting machine-instructions than
assembly-code. In the bytecode there are only opcodes with their values declared, instead of
additional unused data for the EVM like the tag-identifiers in assembly-annotation. Which
type of bytecode the solidity compiler outputs, has to be specified as a parameter in the
compilation-instruction. By default this is deployment bytecode. The use of the deployment-
bytecode in a contract-creation transaction as well as the interpretation of runtime-bytecode
has already been described in detail in the previous chapters. In the following, the structure
of the individual bytecodes as well as the differences in structure will be discussed.
The deployment-bytecode, or rather the actual bytecode for the deployment process can be
divided into three essential parts, as shown in the Figure 4.1 below. This bytecode originated
from a relatively basic Solidity source-code, which can be accessed from the following source1.
However, the particular functionality of the smart-contract is not of importance in this context.
The 3 parts are the deployment bytecode, the embedded runtime bytecode and the attached meta-
data hash. Strictly speaking, all 3 bytecode-parts combined are the deployment-bytecode, but
the actual executed bytecodes-sections in the deployment-process and in runtime can be
differentiated.

Figure 4.1: Bytecode-segments of a compiled smart-contract.

1https://github.com/jonasgebele/ba_bytecodes
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4.1 Identical Bytecode EVM-Initialization

It can be observed that deployment bytecode as well as runtime bytecode always prefixes the
opcodes-stream 0x6080 6040 52 34 80 15 610010 57 6000 80 fd 5b (as indicated in Figure 4.1).
Precise values of the bytecode-streams may vary depending on the compiler version. Here
the Solidity Compiler version 0.5.3 is examined. The significance of this bytecode-sequence of
numbers shall be explained in the following.
The first two instructions 0x60806040 use PUSH1 (0x60) to move the byte values 0x80 and
0x40 to the stack. As the EVM has a stack-based architecture and therefore no registers,
it is only able to execute instructions with values that are stored on the stack. In order to
access them with the following instruction, the values have to be pushed on the stack first.
The following operation MSTORE (0x52) uses these two values from the stack in order to
store into the volatile memory. The first argument specifies the address (0x40) of the second
argument as the value to store to volatile memory. Translated into Yul this would correspond
to mstore(0x40, 0x80) [1].
This memory-space is allocated in volatile memory for the free-memory-pointer, which Solidity
usually abstracts in the source code. The space between 0x00 and 0x40 in the volatile memory
for the EVM is reserved for special hashes (which are not discussed in this thesis for reasons
of complexity and the scope [1].
With CALLVALUE (0x34) the number of ether of the message-call is put on the stack. CALL-
VALUE is an environment instruction, which is correctly interpreted and executed by EVM.
This stack value is duplicated with DUP1 (0x80). ISZERO (0x15) places a 1 on the stack if the
topmost element on the stack is a 0, in other words, if the number of ether of the message call
is 0. Then PUSH2 puts 2 bytes with the value 0x0010 on the stack to set the destination for
the following JUMPI command.
This command jumps to JUMPDEST (directly after REVERT) and starts with the constructor
in the specific deployment-bytecode section, if a positive ether-value is added to the message-
call. If there are no ethers attached to the message-call then REVERT (0xFD) is executed and
the EVM terminates with an error code which is pushed onto the stack beforehand. This
bytecode-logic would correspond to something like the following code written in Solidity:

if(msg.value != 0) revert();

This piece of code was not explicitly used in the Solidity code, but was implicitly added by
the Solidity compiler. This piece of code was not explicitly used in the Solidity code, but was
implicitly added by the Solidity compiler. Since the constructor of the smart-contract was not
defined as payable, Solidity adds the following piece of code to make sure that the constructor
does not receive ether [16].
This previous section is not specific to deployment or runtime-bytecode and has, therefore,
been discussed in general terms. From this point on, the individual bytecodes begin to differ.
Therefore, the differences in the structure and setup of both bytecodes will now be discussed
in more detail.
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4.2 Deployment Bytecode

The deployment code contains the creation-code and the execution of the constructor to ini-
tialize the smart-contract account. As already mentioned in this chapter, this bytecode-section
is only executed once by the EVM for the deployment of the runtime-bytecode. When the
creation code is executed, a copy of the runtime bytecode is returned, which is the actual
smart-contract bytecode.
At the very beginning of the specific deployment bytecode the parameters for the constructor
are loaded into the volatile memory. The parameters are located at the end of the general
bytecode. For this purpose the environment-instruction CODECOPY (0x39) is executed.
As parameters for this instruction, the number of bytes to be copied, the position of the
instructions to be copied of bytecode and the position in the volatile memory where you want
to copy to are pushed onto the stack.
Moreover, as already mentioned in the last chapter, the constructor for initializing the smart-
contract during the deployment process is located in the deployment bytecode. It is located
in the bytecode immediately after storing the parameters. As this constructor is highly
individual for each solidity code, we described it in a very abstract way. Generally speaking
it can be said that for the initialization with the constructor, values are usually stored in the
permanent storage using memory-access operations like SSTORE, in order to define values in
the smart-contract account with the constructor.
After executing the constructor, a CODECOPY is used this time to store the runtime bytecode
with an individual length from an individual position in the bytecode code to the fixed
position 0x0046 in the volatile-memory.
The end of the deployment bytecode is marked with a PUSH1 (0x60) of the value 0x00 onto
the stack, followed by a normal RETURN (0xF3) opcode. Finally, depending on the compiler
version, a STOP 0x00 or an invalid expression such as 0xFE as in compiler version 0.5.0 can be
found [16].

This general structure of the deployment bytecode is always similar and does not differ
fundamentally depending on different smart-contracts or different compiler-versions. The
only differences are specific sections on certain parts of the bytecode like the initialisation of
the constructor or the length of the bytecode to be copied. This general structure is especially
relevant if we want to find out differences by optimization in the compilation process of
EVM-bytecode in the following chapter.

4.3 Runtime Bytecode

The runtime-bytecode is much more individual than the deployment bytecode, but you can
separate it into different sections in the same way. In the following, each section will be
discussed and the basic functionality will be explained. This background information will be
used later when differences in the bytecode will be discussed in the next chapter, which are
due to compiler optimization.
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The runtime-bytecode is the bytecode that is executed each time the smart-contract is
called with a message -all. Incoming transactions are interpreted the same way as with
the deployment-bytecode but transactions are not sent to the zero-address. Thus, the runtime
bytecode starts in the same way as the deployment bytecode with the Identical Bytecode
EVM-Initialization [16], as described above.

4.3.1 Runtime-Dispatcher

At the beginning of the bytecode you find the environment-instruction CALLDATA, which
places information about the message-call (msg.data) on the stack (for detailed information
about the send data of a message-call refer to subsection 2.2.2). If the received data-length is
only 4 bytes, these 4 bytes get interpreted as the function-selector. The message call passes
the Keccak256 hash of the function-name with parameters to identify the function to be called
in the bytecode. The first 4 bytes of the hash value are used to identify the function in this
context. These function signatures are compared with the bytecode using a dispatcher in the
runtime bytecode. The dispatcher compares the function-signature with the function-selectors
and jumps to the corresponding function in the bytecode if one matches. Therefore, this
section is called dispatcher, because it corresponds exactly to such a mechanism. If no
signature matches, a return value is pushed onto the stack and the bytecode ends with a
REVERT (in the case of a Fall-Back function, it jumps to this function instead) [1].
To check if the message-call data is only 4 bytes the bytecode always pushes a 4 onto the
stack and checks with CALLDATASIZE the size of the data on the stack. If the CALLDATA
opcode puts the whole 32-Bytes of message-call data on the stack, byte-masks are used. To
interpret this data we can often find in the bytecode of the runtime-dispatcher address-masks
with 4 bytes of 0xffffffffffff and a 29 byte-mask with a relatively small value (one 1 and the
rest 0) to extract the function selectors from the 32 bytes. This method of extracting the
function-selectors hash using bit-masks is also discussed in the next chapter in the context
of optimization and resulting changes in the bitmask. In general the logical AND opcode is
used to extract the 4 bytes of the function identifier and the other mask is used to reduce the
32 bytes to 4 bytes with a division containing the DIV opcode. This reduces the 32 bytes of
message-call data with parameters to the 4 byte function selector [16].

These 4 bytes are then compared with hard coded identifiers via EQ and, in case of a
match, are the functions in the bytecode are accessed via JUMPI.

4.3.2 Function Wrappers

When the Runtime-Dispatcher jumps to a function, it is not executed immediately. In the
beginning, the EVM must be prepared by the bytecode of the function so that it can be
executed.
If the function is declared not-payable, the Bytecode Initializer is added, as discussed in sec-
tion 4.1. If necessary, additional values on the stack get cleaned up. At this point values from
the permanent-memory must also be loaded onto the stack if the smart-contract needs to
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access account-values in the function.
In some cases further data like addresses from the sender need to be loaded, as well. These
are also processed in the wrapper in the same way as in the Function Selector with bit-masks
and pushed on the stack. Additionally, here you can find optimizations at the bytecode,
as described above. These bit-masks can be recognised with 0xffffffffffffffffffffffffffffffffffffffff
constants in the bytecode [10].

The function wrapper embeds the function body. After the actual Function Bodie the Return
Type is defined and placed below the actual result of the Function Body and gets returned
with RETURN [16].

4.3.3 Function Bodies

The Function Body is the actual function implemented in Solidity. To execute the function
Body, the EVM needs all parameters and values from the permanent storage already on the
stack in order to use them (as this code and its functionality is highly individual from the
implemented source code, it will not be discussed in detail in this context).

4.4 Metadata Hash

The Meta-data Hash is part of the bytecode, but is not executed by the EVM. The hash is also
in the bytecode just behind the STOP opcode and is not jumped to with a JUMPDEST. It
is simply appended to the end of the bytecode, just like the parameters of the deployment
bytecode. This hash contains meta-data about the source code, the used compiler and the
settings during the compilation-process.
The purpose of this hash is to store the meta-data in a system called Swarm, a decentralized
storage-system. This allows users to independently compile the source code with the spec-
ified compiler and verify the bytecode on the blockchain. Thus, not only transactions and
instructions of smart-contracts can be verified, but also the bytecode of the Smart Contracts
themselves [16].
At first the logging-Opcode LOG1 is processed and then the following 6 bytes are pushed onto
the stack. This is the sequence 0x62 7a 7a 72 30 58. The six characters are the ASCII notation for
"bzzr0:", which is a reference to the Swarm-system leading to the informal term Swarm-Hash.
After the sequence comes a SHA3 opcode and followed by the actual metadata-hash, which
has a length of 41 bytes. The hash is encoded with Concise Binary Object Representation [9].
This swarm hash can also be created with a command in an external file with the solidity
commandline compiler solc if this is specified with a flag in the compilation instruction [1].
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The following section explores how the additional optimization with the use of the –optimize
tag by the Solidity compiler has an effect on the bytecode-level. Special focus will be
put on the former chapter in order to work out specific sections of the bytecode, where
changes can be detected straight forward. The optimization does not refer to the standard
bytecode-optimization which is done per default by the Solidity compiler but to the additional
optimization-steps by setting the –optimize-runs=200 tag in the compiler-instruction.
Various Solidity source-files are used as a basis for these findings.These are relatively compact
in order to keep the bytecode as manageable as possible and still cover as many Solidity
features as possible. These Solidity source-files as well as the optimized and non-optimized
bytecodes can be found at the github-source1. The compiler used was the Solidity-commandline-
compiler solc version 0.5.3.
All gathered insights refer to the explicit exclusion of the Yul-optimizer. The Yul-optimizer
must be explicitly enabled in older compiler versions (e.g. 0.5.9), but explicitly excluded
in newer compiler versions (from version 0.6.2) in order to replicate the information. The
purpose of this chapter is to show structural changes that occur generally during optimization
and are not specific to individual smart contracts.

5.1 Differences in sections of the bytecode-structure

Now we will discuss in more detail how additional optimization using the –optimize tag in the
compiler-instruction impacts the structure of the bytecodes in the different sections as well
as which parts change and how the changes impact the bytecode. Each section is preceded
by a short conclusion, followed by a more detailed explanation of the changes caused by the
optimization-process.

5.1.1 Differences in the EVM-Initialization Bytecode-section

No changes in the free memory-pointer and non-payable constructor-check - The initializa-
tion of the volatile memory and the allocation of memory for the free memory pointer for the
EVM remain unmodified. The Identical Bytecode EVM-Initialization, which checks whether
ether are sent to the constructor, cannot be optimized or simplified by the bytecode-optimizer
since not checking could lead to a runtime-error in the EVM.

1https://github.com/jonasgebele/ba_bytecodes
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Minor changes in exit-condition of constructor-check - With the exception of a small con-
stant change, the bytecode section of the exit-condition of the constructor-check is unmodified.
A different address of a JUMPDEST destination has to be pushed onto the stack, which will
be jumped to in case of an error. The reason for this modification is obviously because the rest
of the code and the number of instructions changes through the optimization-modifications
and, therefore, also the position of the JUMPDEST. This marker is always placed on the stack
as the ninth instruction with PUSH2.

In summary, the bytecode initialization of the deployment-bytecode as well as the runtime-
bytecode is substantially unmodified, with the exception of the jump-tag of the exit condition
(if ether are sent to a non-payable constructor). The same conclusion about the check of
non-payable constructor can of course be applied to non-payable functions. In this case the
optimizer does not make any modifications as well.

5.1.2 Differences in the Deployment Bytecode

In the following, the deployment-bytecode is analyzed with respect to the sections of the
constructor-execution, parameter storage and runtime byte code and structural changes are
shown.
Minor changes in storing constructor-parameters - If parameters in the bytecode are passed
for the constructor, they also have to be copied from the end of the bytecode into the volatile
memory. The only difference in this context is the CODECOPY opcode with the argument of
the position, from where the parameters are positioned. As the rest of the bytecode is heavily
modified by the optimization, the position of the parameters at the end of the bytecode is
obviously different.

Major changes in the constructor body - As the following execution of the constructor
is highly individual for the source code of the smart contract, no structural changes can be ob-
served here. Nevertheless it is to point out that the optimizer reduces extremely cost-intensive
opcodes like memory accesses to the permanent memory to a minimum. As especially during
the execution of the constructor many values of the smart-contract account need to be set,
there are many accesses to the permanent memory in this section. Related to the analysed
examples the optimizer reduced the number of calls to SSTORE opcodes from 2 down to 1.

The optimization of memory accesses in general is discussed in subsection 2.4.1. In the
context of this section we take a closer look at structural changes.

Minor changes in storing the runtime-bytecode - Just like the process of storing param-
eters in the volatile memory, the optimization causes hardly any changes when storing the
runtime bytecode with CODECOPY. Only the parameter, which indicates the position in the
bytecode from which the copy is to start, is changed.

There are no changes when the deployment bytecode is terminated. The return value
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is still placed on the stack and the program is terminated with STOP.

5.1.3 Differences in the Runtime Dispatcher

Instruction-Iterations in the Runtime-Dispatcher - The runtime dispatcher shows a rear-
rangement of the instructions in the analyzed bytecodes by the optimizer. This is presumably
due to the restructuring of the optimizer. Small optimizations related to the gas-costs can be
observed, but are mainly due to a change in the order of the PUSH operations on the stack,
which can save SWAP operations. Changing the order of pushing parameters onto the stack
therefore saves gas during execution because of easier and more intelligent access to these
values.

No optimization in the extracting data from CALLDATALOAD - No optimization has
been found to extract the function identifier from the message-call data (msg.data). DIV and
AND are still used to reduce the 32-byte to the 4 bytes and extract the identifier.

5.1.4 Differences Function Wrappers

No structural optimization - In the function wrappers relatively few structural changes by
the optimization-process could be detected. Since the volatile memory in the wrappers has
to be accessed frequently, the optimizer tries to minimize the access to this storage-section.
However, there are relatively few optimization capabilities because the wrappers provide
the parameters and return types for the EVM. Since parameters and return types cannot be
optimized off and are necessary for the execution of the function-bodies, they are structurally
impossible to optimize. However, as in the constructor body, stack operations are optimized
in stack operations, which will be discussed in a later section.

5.1.5 Differences in Function Bodies

No structural optimization - In the Function Body no concrete change behavior patterns
could be detected that relates to the structure of the Function Body and goes beyond general
operation as described in subsection 4.3.3.

5.2 Differences in general Bytecode-Instructions

While in the optimizations described above the general structure of the bytecode was consid-
ered, now general optimizations of opcode-streams are examined, independent of the context
of the bytecode-section.
As the analysis of the optimizer of the Solidity compiler showed, only the BlockDeduplicator,
Common-Subexpression-Eliminator and the Constant-Optimizer are used for the additional opti-
mization during a compile process.
The BlockDeduplicator detects and combines redundant code sections. These code sections
result from duplicate loop constructions with similar or reusable exit-conditions. This is
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especially important for the optimization of the deployment procedure with a low number of
runs, but according to the implementation of the Solidity compiler it is actually independent
of the run parameter, which is quite surprising.
The Common-Subexpression-Eliminator looks for certain bytecode patterns which it can simplify.
In a nutshell, instruction-expressions are recursively divided into certain instruction-classes
(described in more detail in chapter 3). These instruction-expressions are searched for
certain-patterns. The Common-Subexpression-Eliminator converts instruction-expressions with
always-constant values into constants. Expressions are simplified. Expressions are replaced
by other expressions within an expression class according to gas costs. Furthermore it is
checked if certain instruction-expressions can be replaced by a simple opcode instruction.
The Constant-Optimizer replaces defined constants in the bytecode with a dynamic calcula-
tion on the stack. Any number of intermediate results can be reproduced on the stack by
simple operations. The Constant-Optimizer is also the only optimizer with an influence of the
number-runs parameter during the compile process.
More specifically, the Constant Optimizer is used for constants hard-coded in bytecode, such
as address masks. If, for example, special addresses of the sender of the instruction are
used in the bytecode or in the function dispatcher to extract the function-identifiers from the
data-payload, these are hard-coded in the bytecode in the un-optimized state. The masks are
pushed onto the stack and applied by logical operations like AND with an address or another
payload to have the value with the correct number of bytes on the stack, as demonstrated in
the following bytecode-segment.

CALLER
PUSH20 0xffffffffffffffffffffffffffffffffffffffff
AND

However, such address masks can also be created dynamically on the stack by a sequence of
instructions like the following. As an example, to get the address of the sender with the right
size on the stack, can be programmed in Solidity using msg.sender and the constant-optimizer
could convert it to the following bytecode.

CALLER
PUSH1 0x01
PUSH1 0xA0
PUSH1 0x02
EXP
SUB
AND

The result is calculated from the base 2 with the factor 160, then subtracting 1 to get the same
constant and finally do the same logical AND operation to apply the bitmask. This bitmask is
logically combined with the payload of the caller (which is the address of the sender of the
instruction) to get the address with the correct size on the stack.
These bitmasks occur in all possible situations, for example in the function dispatcher or in
the function wrappers, if you expect parameters or return values of a function in a certain
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type.
In general we can conclude that many long constants with all bits set in the bytecode indicate
missing bytecode-optimization, because they should always be created by operations virtually
on the stack. If the bytecode has been optimized extensively for deployment, this is even
more the case, because such a constant takes up much more memory in the bytecode than a
few instructions [1].
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The results achieved provide an indication of how the bytecode-optimizer is structured and
with which bytecode-sections and patterns in the bytecode it is possible to differentiate
optimized bytecode from an un-optimized bytecode. To be able to distinguish whether a
bytecode of a smart-contract is compiled with the –optimize tag is difficult. With the results
so far we can only estimate probabilities to what extent two bytecodes are based on the
same source code. However, in this context it is not possible to differentiate deterministically,
especially not in a large scope where all smart-contracts on the Ethereum blockchain are
analyzed for optimization. When comparing two specific bytecodes, it would be feasible to
compare the control flow graph with the Gas costs of the instructions, which would provide
a suitable estimate for at least some bytecodes.
Another approach would be to re-optimize the analysed bytecode. If the re-optimized byte-
code would be different from the original bytecode, this would indicate that the optimization
was missing in the compilation-process. At the same time, this approach can be used to
detect redundancy of stored smart contracts on the Ethereum blockchain due to missing
optimization. Redundancy can be obtained when the re-optimized bytecode is found again
already existing on the Ethereum blockchain.
This requires further bytecode-optimization of the existing bytecodes stored on the Ethereum
blockchain. How to implement such a re-optimizer of existing bytecode on the Ethereum
blockchain is discussed in the next section, where possible technical and conceptual challenges
will then be addressed in more detail such as an optimizer goes beyond the scope of this
bachelor thesis, especially due to the challenges that are encountered. In this chapter we will
only deal with a conceptual design of such a re-optimizer. A concrete implementation would
be part of the future work.

6.1 Design of the re-optimizer

The bytecode-optimizer is part of the Solidity compiler. It works with the previously in-
troduced data-structure Assembly-Items (m_items), as described in subsection 3.2.2. The
bytecode-optimiser restructures these assembly-items in the optimization-process and returns
a new list of assembly-items as a result.
At this point, if we want to simulate the optimization with the –optimize tag, it is preferable
to only run the optional optimizers over again instead of the entire optimization-process
of the bytecode-optimizer. The required optimizers for this purpose include the Common-
Subexpression-Eliminator, the Block-Deduplicator and the Constant-Optimizer. It is also recom-
mended to separately run the runtime-bytecode and the relevant deployment-bytecode section
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in the case of optimizing a deployment-bytecode. Moreover, the meta-data hash must be
removed because it is appended during the compilation process after the optimization.
This is where a parser needs to be developed to convert the binary hex-bytecode into the
required AssemblyItem data-structure with which the Solidity compiler operates. This is
where a parser must be developed to convert the binary hex bytecode into the required
AssemblyItem data structure. It is important to consider that the AssemblyItem data structure
represents assembly code and therefore contains considerably more detailed information
than regular EVM-bytecode. Firstly, unknown data such as identifiers from jump-labels must
be abstracted and named. Secondly, many attributes of the AssemblyItem data structure
will be uninitialized, as the entire compilation process preceding the optimization is skipped
since we start with the optimization-process. Essentially only the stated AssemblyItems data
structure is relevant for the bytecode-optimizer, which is a list of different assembly-items.
For these assembly-items the optimizer needs the type of the instruction (m_type) as well
as the particular instruction (m_instruction). The optional data payload of the instruction
(m_data) is initialized differently depending on the opcode (more information about the data
structures is provided in subsection 3.2.2).
The actual optimization can be performed by the current bytecode-optimizer. This optimizer
does not have to be re-implemented but can be re-used entirely. Only the standard bytecode-
optimizers (JumpDest Remover, Peephole Optimizer), which are executed also if the –optimized
tag is not set, can be removed without any problems. It is important to make sure that the
optimizer settings (see chapter 3) are correctly initialized so that the needed optimizers are
performed and the expected number of runs is correctly initiated. A default value of 200 will
be assumed. The respective optimizers only needed the AssemblyItems data structure as
input (except for the Constant Optimizer).
At the end it must be considered that the compiler has to be terminated explicitly after
the modified optimization because the further compiling process is not possible due to the
missing initialization of different values. Certain functions of bytecode output are already
implemented in the Solidity compiler and can be reused for the modified bytecode

6.2 Challenges

The potential implementation of such a re-optimizer faces several challenges of technical and
conceptual nature. These make the implementation of a re-optimizer particularly difficult
and raise questions about the fundamental feasibility and correctness of the results. The
bytecodes to be optimized have to be restricted in order to achieve a re-optimization with the
same bytecode of a originally optimized bytecode. See the following section for more details.

6.2.1 Conceptual Challenges

One conceptual problem that might occur is that even with a perfectly correct optimization, the
exact same bytecode might not be produced by a re-optimizer. For a usual optimization with
–optimize tag at compile-time, the input of the three optional optimizers is a non-optimized
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bytecode at each iteration of the main-loop. In contrast to that, a re-optimizer provides 3
optional optimizers with finish-optimized bytecode (from the standard-optimizers), because
the partially optimized bytecode already has many iterations of optimization done by the
default compiler.
As a result, the re-optimizer has a different assembly input at each iteration than the usual
optimizer, because they work with bytecodes optimized to different degree. For this reason
both optimizers do not necessarily come to the exact same bytecode as a result. These
presumably small differences can be qualified by metrics like the Levenshtein distance with a
margin of error.
Another challenge is the frequent changes made to the Solidity Compiler with many different
Solidity Compiler versions. Although the relevant bytecode optimizer has remained fairly
untouched in its basic structure, there are several smaller bug-fixes and changes. For example,
version 0.5.9 introduced a rule to simplify SHL/SHR shift-instruction combinations and
version 0.5.10 implemented the simplification-rule from SUB(0,X) to NOT(X). In principle, it
is, therefore, necessary to restrict the dataset of the analyzed bytecodes to certain compiler
versions or to implement multiple re-optimizers, depending on which compiler the bytecode
was originally compiled with. A possible solution would be to only consider smart-contracts
verified on Swarm, because in this way we are able to check the compiler-version of the used
compiler. However, in this case we would not need a re-optimizer, because we could read the
instruction with which the bytecode was compiled.
Another restriction of the bytecodes to be optimized with the re-optimizer is to consider only
compiler versions that don’t use the Yul-Optimizer by default in the optimization process.
The Yul-Optimizer, which optimizes on the Yul intermediate-language between Solidity
source-code and bytecode, has a relatively large influence on the generated bytecode. This
Yul-Optimizer is used in the several compiler versions in different compilation-instructions.
In the first compiler versions it had to be specified in the compiler instruction that the Yul-
Optimizer should be executed. Later the Yul-Optimizer was executed whenever the –optimize
tag was set [9].
Re-optimization of bytecode, so that redundancy on the Ethereum blockchain can be detected,
obviously only works if the Yul-Optimizer was used for both bytecodes that are being
compared or if the Yul-Optimizer was not used at all. For this reason, bytecodes which
were compiled with one of the latest Solidity compilers should therefore be ignored, because
the re-optimizer can only optimize bytecodes and there cannot optimize regarding the Yul
intermediate-language.
Moreover, it must be assumed that the source-code has been compiled and optimized with
the default-value for the expected number of runs. Although this is not always the case, many
development environments integrate the Solidity commandline compiler, such as Remix, and
therefore automatically initialize the compilation-instruction with the value 200.

6.2.2 Technical Challenges

As already mentioned in the Conceptual Challenges the bytecode contains much less infor-
mation than an assembly-code. Thereby it is only possible to translate the bytecode into
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assembly-code by making certain assumptions like naming the jump labels. But there are
also more problematic cases than the names of markers. While opcodes in bytecode have a
relative general functionality, there are a quantity of assembler-commands in assembly-code,
which are translated to several opcode-instructions. This assignment of assembler-instructions
to opcode-instructions is not always unique and often only identifiable from the context of
the opcode-instructions. For example the assembler-instruction pushString is translatable
by a PUSHX opcode. Nevertheless a PUSHX opcode in combination with other opcode
instructions can represent not only a pushString assembly-instruction, but also other types of
push assembly-instructions. This example shows that the assignment of opcodes to assembler-
instructions in some cases depends on the context of usage, which makes parsing the bytecode
to AssemblyItems quite challenging.
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In this last chapter the results of the bachelor thesis are summarized and provide an outlook
for further work, especially considering a specific implementation of the re-optimizer.

7.1 Conclusion

At the beginning of this thesis we started with a brief overview of the Ethereum foundations.
Besides a short introduction to Ethereum fundamentals, we covered the components of an
Ethereum-transaction as well as the transfer of data by means of transactions. Afterwards, we
discussed the development of smart-contracts, how the EVM handles them and how they are
implemented using high-level programming languages like Solidity. We then introduced the
Ethereum Virtual Machine first from a theoretical point of view with its global singleton state
and state transitions, followed by the operational aspects of the different memory-sections
and the concept of Gas. Then we discussed how the EVM bytecode is generated with the
Solidity compiler and how it is structured and evaluated by the EVM. Last but not least
provided a basic overview of the Yul intermediate-language that operates between the Solidity
source-code and the EVM bytecode.
Afterwards, we began with a detailed analysis of the different optimizers of the Solidity
compiler with references directly from the implementation of the source-code of the compiler.
This chapter aimed to answer research question 1 as well as providing a first detailed and
comprehensive documentation of the functionality and the structure of the different bytecode-
optimizers. We explained the effect of compiler instructions and parameters like the expected
number of executions of a smart-contract regarding the optimization in the compilation-
process. Another area of research was the compilation-context in which the optimization is
performed and how the bytecode is represented internally in the compiler. Before providing
answers to the following research questions, in the next chapter we examine the structure of
the EVM-bytecode in detail. By separating the bytecode into different bytecode-segments and
outlining their functionality, changes through optimization discussed in the next chapter can
be better understood. In doing so, we explained the difference between runtime-bytecode
and deployment-bytecode. We also described the execution of the two bytecode types as well
as the individual aspects and operations for the EVM.
Our main contribution is analysis of optimized bytecode in order to answer research question
2. In doing so, we addressed many structural differences in the bytecode-section, as we have
outlined in the previous chapter, but also general bytecode-patterns, which the bytecode-
optimizer modifies correspondingly.
The last chapter addresses the research-question 3 and describes a conceptual implementation
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of a re-optimizer of EVM-bytecode. In order to demonstrate redundancy in the deployed
bytecodes on the Ethereum blockchain, a re-optimizer is supposed to optimize deployed
bytecodes to identify redundancy. This chapter provides a design for such an implementation
as well as conceptual and technical challenges and drawbacks of such an approach.

7.2 Future Work

One main goal for the future could be the implementation of the actual re-optimizer. The
upcoming challenges mentioned above would be needed to be overcome or, as a trade-off,
the selection of bytecodes to be optimized would have to be narrowed down. For example,
bytecodes with special assembly-instructions may eventually need to be ignored. The trade-
off between the complexity of the implementation of the parser and the processing of the
bytecodes into assembly-items is a trade-off that requires different considerations.
With this re-optimizer all deployment bytecodes on the Ethereum blockchain could be
optimized and the resulting re-optimized bytecodes could be scanned for redundancy on the
Ethereum blockchain. Such a search for redundancy could be used to help many studies that
work with their own data-sets of unique smart-contract bytecodes and don’t take redundancy
regarding missing optimization into consideration. Therefore narrowing down the sets of
unique smart-contracts could lead to more accurate empirical results in the field of bytecode
analytics of Ethereum.
Apart from this, it would be also possible to elaborate even further on the Yul optimizer,
which is currently still in the development-phase and seems to play a more important role in
the upcoming migration to web-assembly. Most notably, the various optimizers in the Yul
optimizer are much more advanced and sophisticated. In this context it would be interesting
to research how the order of the optimizers influences the optimization and how the order of
the optimizers could be improved.
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